
Multiple Partition UBoot

General Description and Name

This scheme is a multiple partition scheme similar to generic multiple partition. It
requires an .mbn partition file with the usual block start, block end and length fields. The
scheme will write a bad block table to the last 2 blocks of the device. The last block of
the device will be the primary bad block table marked with Bbt0, the second to last block
will be a secondary table marked with 1tbB. The last 4 blocks of the device must be
good or the part will be rejected. The bad block tables written will overwrite the
manufacture’s bad block markers. The image data can be either in large format pages or
small format pages. The bad block manager will detect the bad block marks regardless of
format..

Spare Area

The spare area in this scheme can either be programmed with the customer’s image file,
or it can be ignored. ECC is not an option with this particular scheme. The bad block
marks are always located in the spare area.

ECC

This bad block manager uses a customer provided ECC scheme to calculate the ECC
bytes for the generated bad block tables. The code for the ECC generation was taken
from the provided mkflash program. Mkflash was built and used on a linux system due
to it’s reliance on some linux disk I/O functions. The ECC is calculated on a subpage of
the full 2048 byte page and includes the 1st 7 bytes of the spare area record associated
with that subpage.

Relevant User Options

The following special features on the special features tab apply to this scheme. The
default values might work in some cases but please make sure to set the right value
according to your system.
Please note only the below special feature items are related to this scheme and ignore any
others. If any of below items doesn’t exist, please check whether the right version has
been installed or contact Data I/O for support by submitting Device Support Request
through this address: http://www.dataio.com/support/dsr.asp

Please refer to “Description of common NAND special feature.pdf”. for more details.

Bad Block Handling Type = “Multiple Partition Uboot”

Spare Area = “Enabled” if the image contains the spare area data and that data should be
programmed into the device. “Disabled” if the image does not contain the spare area data
and only the main array should be programmed.

Required good block area: Start block = “0” This will require the entered block to be a
valid block

Required good block area: Number of blocks = “0” This will be the total number of
blocks required to be valid after the start block.

PartitionTable File = <Path to .mbn file> A binary file which contains the partition
information for the device. This is the same as the Generic Multiple partition partition
table file. A description of the file is included later.

ERASE AFTER PROGRAM = “Disabled” for normal use. “Enabled” this will cause the
algorithm to perform an erase after the program cycle. This will set a device back to the
virgin state with no bad block tables. Because the bad block tables overwrite the bad
block marker they will be seen as bad with other algorithms and not be erased.

bad block detection = “BBM Specified” Since this scheme uses a subpaged solution, a
custom bad block detection method must be used.

Check BB Marker In DataFile = “Disabled” Since this scheme uses a subpages solution,
the FlashCore must be instructed to ignore overwriting the default bad block location.

All other features are not used for this scheme.

Image Preparation

The image must be prepared similarly to Generic Multiple Partition. There must be 0xFF
padding data between each partition so that the beginning of the partition directly aligns
with the block specified in the start address of the partition. The image data can be either
in large format pages or small format pages. The bad block manager will detect the bad
block marks regardless of format.

Format of PartitionTable.mbn:

a. Binary file fixed length 256 bytes.
b. Organization:16 rows x 4 columns. Each table item is 32-bits, little endian byte ordering.
c. Each row of the table describes configuration for one partition. Up to 16 partitions can be used.
d. Partition configuration:

i. Start Adr : address of start of partition in flash blocks. The programmer will set the file
read pointer and the programmer write pointer to Start Adr. If Start Adr=0xFFFFFFFF,
skip to the next partition.

ii. End Adr : last valid block in the current partition. The last data block programmed must
be equal to or less than End Adr, otherwise the programmer will reject the flash device.

iii. Actual Data Length: number of blocks of data to read from the input file and write to
the flash in the current partition

Please note to keep: Actual Data Length + max bad blocks allowed <= End Adr - Start
Adr + 1

iv. Example PartitionTable.mbn file:

Start Adr End Adr
Actual Data

Length
0x0 0x7FF 0x360 0xFFFFFFFF
0x800 0xFFF 0x30 0xFFFFFFFF
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

NAND Flash Block

Reserved

Revision History

• V 1.0 – 1/6/2010

Appendix
You can get the file “Description of common NAND special features.pdf” from
http://ftp.dataio.com/FCNotes/BBM/

